

Paolo Scardina Agilent Technologies

Removing interferences with the MS-MS technology in triple quadrupole ICP-MS to improve the analytical detection of inorganic nanomaterials.

Current/Future Expectations of ICP-MS What <u>analytical</u> problems remain to be addressed

Even lower DLs

• Lower level trace contaminant analysis in higher-purity and more complex materials (alloys, ceramics, liquid crystal...)

"Unusual" elements

 Increasing need for trace level analysis of elements that aren't typically measured by ICP-MS: Si, P, S, Cl...

Non-polyatomic overlaps

 E.g.: Isobaric and doubly charged overlaps that can't be addressed using helium mode

Very intense backgrounds

 Accurate analysis of analytes that suffer severe background or matrixbased interferences – O₂, N₂, S₂, SO...

Controlling Interferences in ICP-MS Collision Mode or Reaction Mode

(Helium) Collision Mode

- Employed successfully by Agilent ICP-QMS users since 2001 to control polyatomic interferences in complex sample matrices
- Filters out polyatomic ions using kinetic energy discrimination (KED);
- Ensures accurate analysis of most common analytes in typical samples
- BUT, He mode is not effective for doubly-charged or isobaric overlaps, and is not suitable for ultra-low level analysis

Reaction Mode

- Can be effective for doubly-charged and isobaric overlaps, and to remove very intense polyatomics
- BUT, reaction chemistry depends on ions in the cell, so results vary if sample composition changes
- Reaction mode on ICP-QMS is often not reliable, and gives errors in variable samples

• HOW CAN WE MAKE REACTION CHEMISTRY MORE RELIABLE?

The Answer: ICP-MS/MS

Quadrupole ICP-MS (ICP-QMS). Single mass filter, after the cell

Triple Quadrupole ICP-MS (ICP-QQQ). Double mass filter, before/after cell

Mass selection before cell; Q1 rejects all masses except target ion m/z. ONLY target analyte and on-mass interferences enter cell. Overlaps at product ion mass are eliminated

Only the target analyte ions contribute to the measured signal

separated by reaction chemistry

The New, Second Generation Agilent 8900 ICP-QQQ Put your ICP-MS results beyond doubt

New Agilent 8900 Triple Quadrupole ICP-MS (ICP-QQQ)

Tandem mass spectrometer uses MS/MS to control interferences

Replaces the highly successful Agilent 8800 – the world's first and only ICP-QQQ

Joins the market-leading Agilent 7800 and Agilent 7900 quadrupole ICP-MS systems

Why ICP-QQQ? Unique Benefits of MS/MS

ICP-QQQ is a tandem mass spectrometer – 2 mass filters, Q1 and Q2

Q1 is positioned before the cell, so controls ions that enter the cell

Controlled and consistent reaction processes

- Removes uncertainty and ensures accuracy when using reaction gases
- Provides consistent and reliable results, even when sample matrix and co-existing analytes change
- Simplifies method development same gas mode used for all samples
- Enables accurate isotope analysis (no inter-isotope overlaps)
- Removes direct isobaric overlaps; not possible even with highresolution ICP-MS

ICP-MS/MS: How Does it Work?

ICP (plasma) and Interface: Forms and extracts ions from the sample (just like ICP-QMS)

Q1 – controls ions that enter the cell

 Consistent reactions even if sample composition changes ORS⁴ – collision/ reaction gas added

 lons react and are neutralized or moved

• Product ions are formed

Q2 – selects the target analyte mass
Interference-free analyte ions passed to EM

EM (detector): Measures the ions that pass through Q2 (just like ICP-QMS)

ICP-MS/MS: How Does it Work?

ICP (plasma) and Interface: Forms and extracts ions from the sample (just **Extractory**)

Q1 – controls ions that enter the cell

Consistent reactions
 even if sample
 composition changes

Unique aspect of 8900 is MS/MS Mode

- Q1 rejects ALL ions at masses other than target analyte precursor ion mass
 - All existing ions that could overlap an analyte product ion are removed

- All existing ions that could form a product ion overlap at the analyte ion/product ion mass are removed
- Only the analyte and on-mass interference(s) enter the cell

EM (detector): Measures the ions that pass through Q2 (just like ICP-QMS)

Measurement Options in Reaction Mode

ICP-MS can use on-mass or mass-shift measurement.

Choice depends on relative reactivity of analyte and interference(s)

On-mass mode (target isotope measured at its original mass)

Used when reaction gas is more reactive with the interference than with the analyte

E.g. Si measured as Si⁺ with H₂ reaction gas

Mass shift mode (target isotope measured as a reaction product ion)

Used when reaction gas is more reactive with the analyte than with the interference

E.g. S measured as SO⁺ with oxygen reaction gas

Demonstration of MS/MS Mass-Shift in Practice Ti Analysis With O₂ Reaction Cell Gas

Many elements can be measured as MO^+ product ions with O_2 cell gas.

Reaction process used is O-atom addition:

Ti⁺ **precursor** ions react with O_2 cell gas to form TiO⁺ **product** ions:

 Ti⁺ isotopes:
 O-atom addition (+ 16 amu)
 TiO⁺ isotopes

 Ti
 Ti
 TiO

 44 45 46 47 48 49 50 51 52 53
 60 61 62 63 64 65 66 67 68 69 Mass

 $Ti^+ + O_2 \rightarrow TiO^+ + O$

Comparison of Single Quad vs MS/MS Operation TiO⁺ Product lons with O₂ Cell Gas

O₂ reaction chemistry works in conventional ICP-QMS or ICP-QQQ cell

<u>BUT</u> ICP-QMS can't control the ions that enter the cell, so TiO⁺ product ions can be overlapped by other analyte ions (or product ions).

⁴⁶TiO⁺ (mass 62) is overlapped by ⁶²Ni
⁴⁷TiO⁺ (mass 63) is overlapped by ⁶³Cu
⁴⁸TiO⁺ (mass 64) is overlapped by ⁶⁴Zn
⁴⁹TiO⁺ (mass 65) is overlapped by ⁶⁵Cu
⁵⁰TiO⁺ (mass 66) is overlapped by ⁶⁶Zn

Precursor Ion (Q1)	Product Ion (Q2)	Potential Overlaps from other analytes		
Ti	TiO	Ni	Cu	Zn
46	62	⁶² Ni		
47	63		⁶³ Cu	
48	64			⁶⁴ Zn
49	65		⁶⁵ Cu	
50	66			⁶⁶ Zn

These overlapping ions **cannot be rejected by a bandpass cell**, because **they are at the same masses as the TiO⁺ product ions being measured**

TiO⁺ Analysis by Conventional ICP-QMS

TiO⁺ product ions in simple, single-element standard

1 ppb Ti standard – TiO⁺ peaks match theoretical isotopic abundances

TiO⁺ by ICP-QMS; Other Elements Present

In mixed matrix, TiO⁺ product ions are overlapped by other analyte (or matrix) ions. Ti (1 ppb) with Ni (10 ppb) shown below

1 ppb Ti overlaid with 1 ppb Ti + 10 ppb Ni (Ni⁺ overlaps TiO⁺)

TiO⁺ by ICP-QMS; Other Elements Present

Further analyte (or matrix) ions give further overlaps. Ti (1 ppb) with Ni & Cu (10 ppb) shown below

1 ppb Ti overlaid with 1 ppb Ti + 10 ppb Ni & Cu (Ni⁺ & Cu⁺ overlap TiO⁺)

TiO⁺ by ICP-QMS; Other Elements Present

Even in a simple mix of common analytes, all the TiO⁺ product ion isotopes are overlapped when conventional reaction cell ICP-QMS is used

1 ppb Ti overlaid with 1 ppb Ti + 10 ppb Ni, Cu, Zn (Ni⁺, Cu⁺, Zn⁺ overlap TiO⁺)

TiO⁺ with **ICP-QQQ** (same test samples) Neutral Gain Scan Ti⁺ \rightarrow Ti¹⁶O⁺ with O₂ Cell Gas

Reaction process is still O-atom addition, but more specific:

Each Ti⁺ precursor isotope enters the cell <u>alone</u>; all other Ti isotopes (all other <u>masses</u>) are rejected by Q1

Mass transition is specific (+ ¹⁶O), due to fixed Q1 to Q2 mass difference

Q2 scans at Q1 mass + 16 to measure Ti¹⁶O⁺ product ions for all Ti isotopes

Each Ti⁺ isotope is converted to its Ti¹⁶O⁺ product ion by reaction with O₂ cell gas

TiO⁺ Analysis by ICP-QQQ (MS/MS)

TiO⁺ product ions in simple, single-element standard

1 ppb Ti. Ti⁺ is converted to TiO⁺ with O₂ cell gas – perfect template match

TiO⁺ by ICP-QQQ; Other Elements Present

TiO⁺ product ions are consistent in all 4 samples; all the Ni, Cu and Zn overlaps are eliminated with the 8900 ICP-QQQ with MS/MS

MS/MS mode - Q1 rejects all pre-existing ions at TiO⁺ product ion masses, so there are no overlaps from Ni, Cu, Zn

ICP-QQQ; The Benefit of MS/MS is Clear Comparison of TiO⁺ spectrum with ICP-QMS and ICP-QQQ

Top – "Single-Quad" Bandpass Mode

All masses between ~ 30 amu and 80 amu enter the cell, so other ions (Ni⁺, Cu⁺, Zn⁺) contribute to signal at TiO⁺ isotope masses.

Results are unreliable; ALL Ti isotopes are interfered, and the interferences on the different Ti isotopes are matrix-dependent

Bottom – Agilent ICP-QQQ in MS/MS Mode

TiO⁺ peaks match the theoretical isotope abundance template in all samples.

All Ti isotopes are interference-free; secondary isotopes can be used for confirmation, or for isotopic analysis (isotope ratio or isotope dilution)

Application Example: Ti Analysis with NH₃ Cell Gas

 NH_3 mode is often used for Ti analysis, but the product ion spectrum is very complex, due to high reactivity and sequential chemistry with NH_3 cell gas

Can MS/MS control complex NH₃ reaction chemistry to ensure reliable results?

Titanium with NH₃ Cell Gas: ICP-QMS vs ICP-QQQ Comparison of Titanium Isotopic Abundance Template Fit

10 ppb Ti standard; NH_3 reaction mode with single MS (ICP-QMS) (based on Thomas, et. al., *Spectroscopy* 28 (11), 28–34 (2013))

10 ppb Ti in complex biological sample matrix; $\rm NH_3$ reaction mode with MS/MS (ICP-QQQ)

Hardware Developments for Agilent 8900 ICP-QQQ Engineered for Enhanced Performance

Ensuring Agilent 8900 excels in the most demanding applications

Re-engineered argon gas flow path; specialized materials minimize background contamination for silicon and sulfur (DL < 50 ppt)

ORS⁴ collision/reaction cell, with higher frequency and axial acceleration increases sensitivity and controls formation of higher-order cluster ions

Extended Q2 mass range – up to m/z 275 – allows highmass product ions to be measured (e.g. U as UO_2^+)

New detector with fast TRA capability (minimum dwell time 0.1 ms) and wide dynamic range (11 orders for 8900 #100/#200; 10 orders for 8900)

New Interface Vacuum, Ion Lens & Axial Acceleration Higher sensitivity x ~2 for Advanced/Semiconductor Configurations

High sensitivity and ultra-low background (0.2 cps) gives DLs of 1 to 2 ppq – illustrated for Th & U

Extended Mass Range for Q2 – 275 amu Allows access to high-mass product ions

Some analytes give highest sensitivity for high-order product ions – for example MO_2^+ or NH_3 clusters

Uranium can be measured at high sensitivity as UO_2^+ , using O_2 cell gas. ²³⁸ UO_2^+ appears at mass 270 – beyond the mass range of the 8800 (max 260)

Many elements can be measured as high-mass ammonia cluster ions Example of Hf, measured as

Hf(NH₂)(NH₃)₄⁺ at *m/z* 258, 260, 261, 262, 263 and 264 (right)

5991-6553EN

Analysis of 10 nm Gold Nanoparticles Using fast TRA capability of the Agilent 8900 ICP-QQQ

2x reduction in diameter means 8x less signal

×10 5

Response (cps)

×10 5

2

B

2 -Α

8900 can easily detect 10nm Au NPs above background

23.0

Time (s)

SiO₂ nanoparticles (NPs) – by far the most important engineered NPs (ENPs) in environment

Low Si background, high sensitivity and <u>effective control of interferences with MS/MS</u> ensure that small (50 nm) SiO₂ NPs can be easily distinguished from background signal

New Agilent 8900 ICP-QQQ Other Hardware/Performance Improvements

New 4-channel cell gas flow control system	 More cell gases supported: NH₃, CH₄, C₂H₂, C₂H₆, C₃H₄, C₃H₈, CH₃F, CF₄, NO, N₂O, CO, CO₂, N₂ Max flow of low-flow MFC increased to 1.5 mL/min Faster cell gas switching (H₂ → He in 5 sec.)
New ion lens design	 Sensitivity up to 1.2 Gcps/ppm on 8900 (2x higher than Agilent 8800) Background < 0.2 cps (<i>m</i>/<i>z</i> 9 & 238)
Optional lenses (for #100 & #200)	 Reduced Na & K background with hot plasma Applicable to high-matrix, high-purity semicon samples

Agilent ICP-MS and ICP-QQQ

AGILENT QUADRUPOLE ICP-MS

Market-leading matrix tolerance, detection limits, dynamic range and sample throughput

Optimized octopole-based collision/ reaction cell gives unrivalled interference removal in helium (He) mode

AGILENT TRIPLE QUADRUPOLE ICP-MS

Matrix tolerance, dynamic range, He mode performance, productivity comparable to Agilent ICP-QMS

Tandem MS configuration allows MS/MS mode for **controlled and consistent interference removal with reactive cell gases**

Thank You!

Your questions...

